Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the following set of data, find the sample standard deviation, to the nearest thousandth.
70,39,114,39,52,108,101

For the following set of data, find the sample standard deviation, to the nearest thousandth.\newline70,39,114,39,52,108,10170,39,114,39,52,108,101

Full solution

Q. For the following set of data, find the sample standard deviation, to the nearest thousandth.\newline70,39,114,39,52,108,10170,39,114,39,52,108,101
  1. List data set: List the given data set.\newlineThe data set provided is: 70,39,114,39,52,108,10170, 39, 114, 39, 52, 108, 101.
  2. Calculate mean: Calculate the mean (average) of the data set.\newlineTo find the mean, sum all the data points and divide by the number of data points.\newlineMean = (70+39+114+39+52+108+101)/7(70 + 39 + 114 + 39 + 52 + 108 + 101) / 7\newlineMean = 523/7523 / 7\newlineMean 74.714\approx 74.714
  3. Calculate deviations: Calculate the deviations from the mean for each data point. This involves subtracting the mean from each data point. Deviations: (7074.714)(70 - 74.714), (3974.714)(39 - 74.714), (11474.714)(114 - 74.714), (3974.714)(39 - 74.714), (5274.714)(52 - 74.714), (10874.714)(108 - 74.714), (10174.714)(101 - 74.714)
  4. Square deviations: Square each deviation to get the squared deviations.\newlineSquared deviations: (7074.714)2(70 - 74.714)^2, (3974.714)2(39 - 74.714)^2, (11474.714)2(114 - 74.714)^2, (3974.714)2(39 - 74.714)^2, (5274.714)2(52 - 74.714)^2, (10874.714)2(108 - 74.714)^2, (10174.714)2(101 - 74.714)^2
  5. Sum squared deviations: Sum the squared deviations.\newlineSum of squared deviations = (7074.714)2+(3974.714)2+(11474.714)2+(3974.714)2+(5274.714)2+(10874.714)2+(10174.714)2(70 - 74.714)^2 + (39 - 74.714)^2 + (114 - 74.714)^2 + (39 - 74.714)^2 + (52 - 74.714)^2 + (108 - 74.714)^2 + (101 - 74.714)^2\newlineSum of squared deviations 22.449+1277.571+1538.449+1277.571+517.571+1111.449+689.571\approx 22.449 + 1277.571 + 1538.449 + 1277.571 + 517.571 + 1111.449 + 689.571\newlineSum of squared deviations 5434.631\approx 5434.631
  6. Calculate variance: Divide the sum of squared deviations by the sample size minus one to get the variance.\newlineSince we have 77 data points, we divide by 66 (n1n-1).\newlineVariance = 5434.631/65434.631 / 6\newlineVariance 905.772\approx 905.772
  7. Find standard deviation: Take the square root of the variance to find the sample standard deviation.\newlineSample standard deviation = 905.772\sqrt{905.772}\newlineSample standard deviation 30.096\approx 30.096

More problems from Identify discrete and continuous random variables