Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write the expression below as a single logarithm in simplest form.

log_(b)6-log_(b)2
Answer: 
log_(b)(◻)

Write the expression below as a single logarithm in simplest form.\newlinelogb6logb2 \log _{b} 6-\log _{b} 2 \newlineAnswer: logb() \log _{b}(\square)

Full solution

Q. Write the expression below as a single logarithm in simplest form.\newlinelogb6logb2 \log _{b} 6-\log _{b} 2 \newlineAnswer: logb() \log _{b}(\square)
  1. Identify Property: Identify the property used to combine the logarithms.\newlineWe have the expression logb(6)logb(2)\log_b(6) - \log_b(2), which involves the subtraction of two logarithms with the same base bb.\newlineThe property that allows us to combine these logarithms is the quotient property of logarithms.\newlineQuotient Property: logb(P)logb(Q)=logb(PQ)\log_b(P) - \log_b(Q) = \log_b\left(\frac{P}{Q}\right)
  2. Apply Quotient Property: Apply the quotient property to combine the logarithms.\newlineUsing the quotient property, we can write the expression as a single logarithm:\newlinelogb(6)logb(2)=logb(62)\log_b(6) - \log_b(2) = \log_b\left(\frac{6}{2}\right)
  3. Simplify Fraction: Simplify the fraction inside the logarithm.\newlineSimplify the fraction 62\frac{6}{2} to get 33:\newlinelogb(62)=logb(3)\log_b\left(\frac{6}{2}\right) = \log_b(3)
  4. Write Final Answer: Write the final answer.\newlineThe expression logb(6)logb(2)\log_b(6) - \log_b(2) as a single logarithm in simplest form is logb(3)\log_b(3).

More problems from Quotient property of logarithms