Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which property of logarithms does this equation demonstrate? \newlinelog33+log36=log318\log_3 3 + \log_3 6 = \log_3 18\newlineChoices:\newline(A) Product Property\text{Product Property}\newline(B) Power Property\text{Power Property}\newline(C) Quotient Property\text{Quotient Property}

Full solution

Q. Which property of logarithms does this equation demonstrate? \newlinelog33+log36=log318\log_3 3 + \log_3 6 = \log_3 18\newlineChoices:\newline(A) Product Property\text{Product Property}\newline(B) Power Property\text{Power Property}\newline(C) Quotient Property\text{Quotient Property}
  1. Analyze the equation: Analyze the given equation.\newlineWe have the equation log33+log36=log318\log_3 3 + \log_3 6 = \log_3 18. We need to determine which logarithmic property this equation represents.
  2. Recall logarithmic properties: Recall the properties of logarithms.\newlineThere are three main properties of logarithms that are relevant to this problem: the Product Property, the Power Property, and the Quotient Property. The Product Property states that logb(P)+logb(Q)=logb(PQ)\log_b (P) + \log_b (Q) = \log_b (PQ), the Power Property states that nlogb(P)=logb(Pn)n \cdot \log_b (P) = \log_b (P^n), and the Quotient Property states that logb(P)logb(Q)=logb(PQ)\log_b (P) - \log_b (Q) = \log_b \left(\frac{P}{Q}\right).
  3. Match equation with property: Match the given equation with the correct property.\newlineThe given equation is log33+log36=log318\log_3 3 + \log_3 6 = \log_3 18. This matches the form of the Product Property, which states that the sum of the logarithms is equal to the logarithm of the product of the bases: logb(P)+logb(Q)=logb(PQ)\log_b (P) + \log_b (Q) = \log_b (PQ).
  4. Verify equation using property: Verify the equation using the Product Property.\newlineUsing the Product Property, we can combine the logarithms on the left side of the equation: log3(3×6)=log318\log_3 (3 \times 6) = \log_3 18. Since 3×63 \times 6 equals 1818, the equation is correct and demonstrates the Product Property.

More problems from Identify properties of logarithms