Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write the expression below as a single logarithm in simplest form.

log_(b)3+log_(b)2
Answer: 
log_(b)(◻)

Write the expression below as a single logarithm in simplest form.\newlinelogb3+logb2 \log _{b} 3+\log _{b} 2 \newlineAnswer: logb() \log _{b}(\square)

Full solution

Q. Write the expression below as a single logarithm in simplest form.\newlinelogb3+logb2 \log _{b} 3+\log _{b} 2 \newlineAnswer: logb() \log _{b}(\square)
  1. Identify Property: Identify the property used to combine logb(3)\log_b(3) and logb(2)\log_b(2). When adding two logarithms with the same base, we can use the product property of logarithms.\newlineProduct Property: logb(M)+logb(N)=logb(M×N)\log_b (M) + \log_b (N) = \log_b (M \times N)
  2. Apply Property: Apply the product property to combine logb(3)\log_b(3) and logb(2)\log_b(2).\newlineUsing the product property, we combine the two logarithms:\newlinelogb(3)+logb(2)=logb(3×2)\log_b(3) + \log_b(2) = \log_b(3 \times 2)
  3. Perform Multiplication: Perform the multiplication inside the logarithm.\newlineMultiply the constants inside the logarithm:\newlinelogb(3×2)=logb(6)\log_b(3 \times 2) = \log_b(6)
  4. Check Simplified Form: Check if the expression is in the simplest form.\newlineThe expression logb(6)\log_b(6) is already in the simplest form because it is a single logarithm with a distinct constant inside.

More problems from Quotient property of logarithms