Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write the expression below as a single logarithm in simplest form.

log_(b)2+2log_(b)2
Answer: 
log_(b)(◻)

Write the expression below as a single logarithm in simplest form.\newlinelogb2+2logb2 \log _{b} 2+2 \log _{b} 2 \newlineAnswer: logb() \log _{b}(\square)

Full solution

Q. Write the expression below as a single logarithm in simplest form.\newlinelogb2+2logb2 \log _{b} 2+2 \log _{b} 2 \newlineAnswer: logb() \log _{b}(\square)
  1. Identify Property Used: Identify the property used to combine the logarithms.\newlineThe expression logb(2)+2logb(2)\log_b(2) + 2\log_b(2) involves a sum of logarithms and a multiplication by a constant within a logarithm.\newlineThe Power Property of logarithms states that nlogb(x)=logb(xn)n\log_b(x) = \log_b(x^n), and the Product Property states that logb(x)+logb(y)=logb(xy)\log_b(x) + \log_b(y) = \log_b(xy).
  2. Apply Power Property: Apply the Power Property to the term 2logb(2)2\log_b(2). Using the Power Property, we can rewrite 2logb(2)2\log_b(2) as logb(22)\log_b(2^2). logb(22)=logb(4)\log_b(2^2) = \log_b(4)
  3. Combine Using Product Property: Combine the logarithms using the Product Property.\newlineNow we have logb(2)+logb(4)\log_b(2) + \log_b(4), which can be combined using the Product Property.\newlinelogb(2)+logb(4)=logb(2×4)\log_b(2) + \log_b(4) = \log_b(2\times4)
  4. Simplify Inside Logarithm: Simplify the expression inside the logarithm.\newlineMultiplying the numbers inside the logarithm gives us:\newlinelogb(2×4)=logb(8)\log_b(2\times4) = \log_b(8)

More problems from Quotient property of logarithms