Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write the expression below as a single logarithm in simplest form.

2log_(b)3-log_(b)9
Answer: 
log_(b)(◻)

Write the expression below as a single logarithm in simplest form.\newline2logb3logb9 2 \log _{b} 3-\log _{b} 9 \newlineAnswer: logb() \log _{b}(\square)

Full solution

Q. Write the expression below as a single logarithm in simplest form.\newline2logb3logb9 2 \log _{b} 3-\log _{b} 9 \newlineAnswer: logb() \log _{b}(\square)
  1. Identify Properties: Identify the properties used to combine the logarithms.\newlineThe expression given is 2logb3logb92\log_{b}3 - \log_{b}9. To combine these logarithms into a single logarithm, we will use the power property and the subtraction property of logarithms.\newlinePower Property: logb(Pk)=klogb(P)\log_b(P^k) = k \cdot \log_b(P)\newlineSubtraction Property: logb(P)logb(Q)=logb(PQ)\log_b(P) - \log_b(Q) = \log_b\left(\frac{P}{Q}\right)
  2. Apply Power Property: Apply the power property to the first term.\newlineThe first term is 2logb32\log_{b}3, which can be rewritten using the power property as logb(32)\log_{b}(3^2).\newlineSo, 2logb32\log_{b}3 becomes logb(32)\log_{b}(3^2) or logb(9)\log_{b}(9).
  3. Combine Logarithms: Combine the two logarithms using the subtraction property.\newlineNow we have logb(9)\log_{b}(9) from the first term and logb9-\log_{b}9 from the second term. Using the subtraction property, we can combine these into a single logarithm:\newlinelogb(9)logb9=logb(99)\log_{b}(9) - \log_{b}9 = \log_{b}(\frac{9}{9}).
  4. Simplify Expression: Simplify the expression inside the logarithm.\newlineThe expression inside the logarithm is 99\frac{9}{9}, which simplifies to 11.\newlineSo, logb(99)\log_{b}\left(\frac{9}{9}\right) becomes logb(1)\log_{b}(1).
  5. Recognize Identity: Recognize the logarithmic identity.\newlineThe logarithm of 11 to any base is always 00.\newlineTherefore, logb(1)=0\log_{b}(1) = 0.

More problems from Quotient property of logarithms