Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write the expression below as a single logarithm in simplest form.

3log_(b)3-log_(b)3
Answer: 
log_(b)(◻)

Write the expression below as a single logarithm in simplest form.\newline3logb3logb3 3 \log _{b} 3-\log _{b} 3 \newlineAnswer: logb() \log _{b}(\square)

Full solution

Q. Write the expression below as a single logarithm in simplest form.\newline3logb3logb3 3 \log _{b} 3-\log _{b} 3 \newlineAnswer: logb() \log _{b}(\square)
  1. Identify Properties: Identify the properties of logarithms that can be applied.\newlineWe have the expression 3logb3logb33\log_{b}3 - \log_{b}3. We can use the power rule of logarithms to rewrite the first term, which states that nlogb(a)=logb(an)n\log_b(a) = \log_b(a^n).
  2. Apply Power Rule: Apply the power rule to the first term.\newlineUsing the power rule, we can rewrite 3logb33\log_{b}3 as logb(33)\log_{b}(3^3).
  3. Simplify Exponent: Simplify the exponent.\newlineCalculate 333^3 to simplify the expression.\newline33=273^3 = 27\newlineSo, logb(33)\log_{b}(3^3) becomes logb(27)\log_{b}(27).
  4. Combine Logarithms: Combine the logarithms.\newlineNow we have logb(27)logb3\log_{b}(27) - \log_{b}3. We can use the quotient rule of logarithms, which states that logb(a)logb(c)=logb(ac)\log_b(a) - \log_b(c) = \log_b\left(\frac{a}{c}\right), to combine these into a single logarithm.
  5. Apply Quotient Rule: Apply the quotient rule. Using the quotient rule, we combine logb(27)\log_{b}(27) and logb3\log_{b}3 into logb(273)\log_{b}\left(\frac{27}{3}\right).
  6. Simplify Fraction: Simplify the fraction inside the logarithm.\newlineCalculate 273\frac{27}{3} to simplify the expression inside the logarithm.\newline273=9\frac{27}{3} = 9\newlineSo, logb(273)\log_{b}\left(\frac{27}{3}\right) becomes logb(9)\log_{b}(9).

More problems from Quotient property of logarithms