Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write the expression below as a single logarithm in simplest form.

2log_(b)3-log_(b)3
Answer: 
log_(b)(◻)

Write the expression below as a single logarithm in simplest form.\newline2logb3logb3 2 \log _{b} 3-\log _{b} 3 \newlineAnswer: logb() \log _{b}(\square)

Full solution

Q. Write the expression below as a single logarithm in simplest form.\newline2logb3logb3 2 \log _{b} 3-\log _{b} 3 \newlineAnswer: logb() \log _{b}(\square)
  1. Understand and Identify: Understand the given expression and identify the logarithm properties to use.\newlineWe have the expression 2logb3logb32\log_{b}3 - \log_{b}3. To combine these logarithms into a single logarithm, we can use the properties of logarithms, specifically the power rule and the subtraction rule.\newlineThe power rule states that nlogb(a)=logb(an)n\log_{b}(a) = \log_{b}(a^n).\newlineThe subtraction rule states that logb(a)logb(c)=logb(a/c)\log_{b}(a) - \log_{b}(c) = \log_{b}(a/c).
  2. Apply Power Rule: Apply the power rule to the first term of the expression.\newlineUsing the power rule, we can rewrite 2logb32\log_{b}3 as logb(32)\log_{b}(3^2).\newlineSo, 2logb32\log_{b}3 becomes logb(9)\log_{b}(9).
  3. Combine Using Subtraction Rule: Combine the two logarithms using the subtraction rule.\newlineNow we have logb(9)logb(3)\log_{b}(9) - \log_{b}(3). Using the subtraction rule, we can combine these into a single logarithm:\newlinelogb(9)logb(3)=logb(93)\log_{b}(9) - \log_{b}(3) = \log_{b}\left(\frac{9}{3}\right).
  4. Simplify Fraction: Simplify the fraction inside the logarithm.\newlineSimplify 93\frac{9}{3} to get 33.\newlineSo, logb(93)\log_{b}\left(\frac{9}{3}\right) becomes logb(3)\log_{b}(3).

More problems from Quotient property of logarithms