Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write the expression below as a single logarithm in simplest form.

2log_(b)3+log_(b)6
Answer: 
log_(b)(◻)

Write the expression below as a single logarithm in simplest form.\newline2logb3+logb6 2 \log _{b} 3+\log _{b} 6 \newlineAnswer: logb() \log _{b}(\square)

Full solution

Q. Write the expression below as a single logarithm in simplest form.\newline2logb3+logb6 2 \log _{b} 3+\log _{b} 6 \newlineAnswer: logb() \log _{b}(\square)
  1. Identify Properties: Identify the properties used to combine logarithms.\newlineThe expression 2logb3+logb62\log_{b}3 + \log_{b}6 involves two logarithmic terms that can be combined using the power property and the product property of logarithms.\newlinePower Property: logb(Pk)=klogbP\log_b (P^k) = k \cdot \log_b P\newlineProduct Property: logbP+logbQ=logb(PQ)\log_b P + \log_b Q = \log_b (P \cdot Q)
  2. Apply Power Property: Apply the power property to the first term.\newlineThe power property allows us to move the coefficient of the logarithm inside as an exponent of the argument.\newline2logb3=logb(32)2\log_{b}3 = \log_{b}(3^2)
  3. Simplify Exponent: Simplify the exponent.\newlineCalculate the value of 323^2.\newline32=93^2 = 9\newlineSo, 2logb32\log_{b}3 becomes logb9\log_{b}9.
  4. Apply Product Property: Apply the product property to combine the logarithms.\newlineNow, we can use the product property to combine logb9\log_{b}9 and logb6\log_{b}6 into a single logarithm.\newlinelogb9+logb6=logb(9×6)\log_{b}9 + \log_{b}6 = \log_{b}(9 \times 6)
  5. Calculate Product: Calculate the product inside the logarithm.\newlineMultiply 99 by 66 to get the argument of the combined logarithm.\newline9×6=549 \times 6 = 54\newlineSo, logb9+logb6\log_{b}9 + \log_{b}6 becomes logb54\log_{b}54.
  6. Write Final Answer: Write the final answer.\newlineThe expression 2logb3+logb62\log_{b}3 + \log_{b}6 as a single logarithm in simplest form is:\newlinelogb54\log_{b}54

More problems from Quotient property of logarithms