Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write the expression 
3ln 3-ln 5 as a single logarithm in simplest form without any negative exponents.
Answer: 
ln(◻)

Write the expression 3ln3ln5 3 \ln 3-\ln 5 as a single logarithm in simplest form without any negative exponents.\newlineAnswer: ln() \ln (\square)

Full solution

Q. Write the expression 3ln3ln5 3 \ln 3-\ln 5 as a single logarithm in simplest form without any negative exponents.\newlineAnswer: ln() \ln (\square)
  1. Apply power rule: Apply the power rule of logarithms to the term 3ln33\ln 3. The power rule states that alogb(c)=logb(ca)a \cdot \log_b(c) = \log_b(c^a). Therefore, 3ln33\ln 3 can be rewritten as ln(33)\ln(3^3). Calculation: ln(33)=ln(27)\ln(3^3) = \ln(27).
  2. Combine logarithmic terms: Combine the two logarithmic terms using the quotient rule.\newlineThe quotient rule states that logb(m)logb(n)=logb(mn)\log_b(m) - \log_b(n) = \log_b\left(\frac{m}{n}\right).\newlineTherefore, ln(27)ln(5)\ln(27) - \ln(5) can be combined into a single logarithm as ln(275)\ln\left(\frac{27}{5}\right).\newlineCalculation: ln(27)ln(5)=ln(275)\ln(27) - \ln(5) = \ln\left(\frac{27}{5}\right).

More problems from Change of base formula