Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write the expression 
2ln 2-ln 3 as a single logarithm in simplest form without any negative exponents.
Answer: 
ln(◻)

Write the expression 2ln2ln3 2 \ln 2-\ln 3 as a single logarithm in simplest form without any negative exponents.\newlineAnswer: ln() \ln (\square)

Full solution

Q. Write the expression 2ln2ln3 2 \ln 2-\ln 3 as a single logarithm in simplest form without any negative exponents.\newlineAnswer: ln() \ln (\square)
  1. Apply power rule: Apply the power rule of logarithms to the term 2ln22\ln 2. The power rule states that alogb(c)=logb(ca)a \cdot \log_b(c) = \log_b(c^a). Therefore, 2ln22\ln 2 can be rewritten as ln(22)\ln(2^2). Calculation: ln(22)=ln(4)\ln(2^2) = \ln(4)
  2. Rewrite term as ln(4)\ln(4): Combine the two logarithmic terms using the quotient rule.\newlineThe quotient rule states that logb(m)logb(n)=logb(mn)\log_b(m) - \log_b(n) = \log_b\left(\frac{m}{n}\right).\newlineTherefore, ln(4)ln(3)\ln(4) - \ln(3) can be combined into a single logarithm.\newlineCalculation: ln(4)ln(3)=ln(43)\ln(4) - \ln(3) = \ln\left(\frac{4}{3}\right)

More problems from Change of base formula