Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write an exponential function in the form 
y=ab^(x) that goes through the points 
(0,9) and 
(4,144).
Answer:

Write an exponential function in the form y=abx y=a b^{x} that goes through the points (0,9) (0,9) and (4,144) (4,144) .\newlineAnswer:

Full solution

Q. Write an exponential function in the form y=abx y=a b^{x} that goes through the points (0,9) (0,9) and (4,144) (4,144) .\newlineAnswer:
  1. Find 'a' value: Use the first point (0,9)(0,9) to find the value of 'a'.\newlineSince the point (0,9)(0,9) is on the graph of the function, when we substitute x=0x=0, we should get y=9y=9.\newlineSo, y=ab0=a×1=ay = ab^{0} = a \times 1 = a.\newlineTherefore, a=9a = 9.
  2. Find 'b' value: Use the second point (4,144)(4,144) to find the value of 'b'.\newlineWe know that a=9a=9 from Step 11, so we can substitute aa and the coordinates of the second point into the equation y=abxy=ab^{x} to find 'b'.\newlineSubstituting x=4x=4 and y=144y=144, we get 144=9b4144 = 9b^{4}.\newlineTo solve for bb, we divide both sides by 99 to isolate b4b^{4}.\newlinea=9a=900\newlinea=9a=911\newlineTo find bb, we take the fourth root of both sides.\newlinea=9a=933\newlinea=9a=944
  3. Write final exponential function: Write the final exponential function using the values of 'a' and 'b'.\newlineWe have found that a=9a=9 and b=2b=2. Now we can write the exponential function as:\newliney=ab(x)y = ab^{(x)}\newliney=9×2(x)y = 9 \times 2^{(x)}\newlineThis is the exponential function that goes through the points (0,9)(0,9) and (4,144)(4,144).

More problems from Write a linear equation from two points