Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write a sine function that has a midline of 
y=5, an amplitude of 2 and a period of 
(2pi)/(7).
Answer: 
f(x)=

Write a sine function that has a midline of y=5 y=5 , an amplitude of 22 and a period of 2π7 \frac{2 \pi}{7} .\newlineAnswer: f(x)= f(x)=

Full solution

Q. Write a sine function that has a midline of y=5 y=5 , an amplitude of 22 and a period of 2π7 \frac{2 \pi}{7} .\newlineAnswer: f(x)= f(x)=
  1. Find Amplitude: Write the amplitude AA of the given problem.\newlineThe amplitude is the absolute value of AA.\newlineA=2A = 2
  2. Calculate Period: Period = (2π)/7(2\pi)/7. Find the value of BB. The value of BB determines the period of the sinusoidal function. B=(2π)/PeriodB = (2\pi) / \text{Period} B=(2π)/((2π)/7)B = (2\pi) / ((2\pi)/7) B=7B = 7
  3. Determine Midline: Write the midline DD of the given problem.\newlineThe midline is the vertical shift of the function.\newlineD=5D = 5
  4. Find Value of CC: Since there is no horizontal shift given, we can assume C=0C = 0.
  5. Write Sinusoidal Function: Write the equation of the sinusoidal function.\newlineSubstitute values of AA, BB, CC, and DD in f(x)=Asin(Bx+C)+Df(x) = A \sin(Bx + C) + D.\newlinef(x)=2sin(7x+0)+5f(x) = 2 \sin(7x + 0) + 5\newlinef(x)=2sin(7x)+5f(x) = 2 \sin(7x) + 5

More problems from Write equations of cosine functions using properties