Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write a sine function that has a midline of 
y=4, an amplitude of 2 and a period of 
(2pi)/(7).
Answer: 
f(x)=

Write a sine function that has a midline of y=4 y=4 , an amplitude of 22 and a period of 2π7 \frac{2 \pi}{7} .\newlineAnswer: f(x)= f(x)=

Full solution

Q. Write a sine function that has a midline of y=4 y=4 , an amplitude of 22 and a period of 2π7 \frac{2 \pi}{7} .\newlineAnswer: f(x)= f(x)=
  1. Write Amplitude: Write the amplitude AA of the given problem.\newlineThe amplitude is the absolute value of AA.\newlineA=2A = 2
  2. Determine Period: Determine the period TT. The period TT is given as 2π7\frac{2\pi}{7}. Find the value of BB. The value of BB determines the period of the sinusoidal function. B=2πTB = \frac{2\pi}{T} B=2π(2π7)B = \frac{2\pi}{\left(\frac{2\pi}{7}\right)} B=7B = 7
  3. Find Value of B: Determine the midline DD. The midline is given as y=4y = 4. This is the vertical shift of the function. D=4D = 4
  4. Determine Midline: Determine the phase shift CC.\newlineSince no phase shift is mentioned, we can assume C=0C = 0.
  5. Determine Phase Shift: Write the equation of the sinusoidal function.\newlineSubstitute values of AA, BB, CC, and DD into f(x)=Asin(Bx+C)+Df(x) = A \sin(Bx + C) + D.\newlinef(x)=2sin(7x+0)+4f(x) = 2 \sin(7x + 0) + 4\newlinef(x)=2sin(7x)+4f(x) = 2 \sin(7x) + 4

More problems from Write equations of cosine functions using properties