Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Is the function q(x)=x69 q(x) = x^6 - 9 even, odd, or neither?\newlineChoices:\newline[[even][odd][neither]]\text{[[even][odd][neither]]}

Full solution

Q. Is the function q(x)=x69 q(x) = x^6 - 9 even, odd, or neither?\newlineChoices:\newline[[even][odd][neither]]\text{[[even][odd][neither]]}
  1. Determining Function Type: To determine if the function q(x)q(x) is even, odd, or neither, we need to compare q(x)q(x) with q(x)q(-x). If q(x)=q(x)q(x) = q(-x), then the function is even. If q(x)=q(x)q(x) = -q(-x), then the function is odd. If neither condition is met, the function is neither even nor odd.
  2. Writing Down the Function: First, we write down the given function: q(x)=x69q(x) = x^6 - 9.
  3. Finding q(-x): Next, we find q(x)q(-x) by substituting x-x for xx in the function: q(x)=(x)69q(-x) = (-x)^6 - 9.
  4. Simplifying q(x)q(-x): We simplify q(x)q(-x). Since (x)6=x6(-x)^6 = x^6 (because the exponent 66 is even), we get q(x)=x69q(-x) = x^6 - 9.
  5. Comparing q(x)q(x) and q(x)q(-x): Now we compare q(x)q(x) with q(x)q(-x). We have q(x)=x69q(x) = x^6 - 9 and q(x)=(x)69q(-x) = (-x)^6 - 9. Since q(x)=q(x)q(x) = q(-x), the function q(x)q(x) is even.

More problems from Even and odd functions