Q. Is the function q(x)=x6−9 even, odd, or neither?Choices:[[even][odd][neither]]
Determining Function Type: To determine if the function q(x) is even, odd, or neither, we need to compare q(x) with q(−x). If q(x)=q(−x), then the function is even. If q(x)=−q(−x), then the function is odd. If neither condition is met, the function is neither even nor odd.
Writing Down the Function: First, we write down the given function: q(x)=x6−9.
Finding q(-x): Next, we find q(−x) by substituting −x for x in the function: q(−x)=(−x)6−9.
Simplifying q(−x): We simplify q(−x). Since (−x)6=x6 (because the exponent 6 is even), we get q(−x)=x6−9.
Comparing q(x) and q(−x): Now we compare q(x) with q(−x). We have q(x)=x6−9 and q(−x)=(−x)6−9. Since q(x)=q(−x), the function q(x) is even.