Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which recursive formula can be used to define this sequence for n > 1?\newline11,12,13,14,15,16,11, 12, 13, 14, 15, 16, \ldots\newlineChoices:\newline(A) an=1an1a_n = 1a_{n-1}\newline(B) an=1211an1a_n = \frac{12}{11}a_{n-1}\newline(C) an=an1+1a_n = a_{n-1} + 1\newline(D) an=an11a_n = a_{n-1} - 1

Full solution

Q. Which recursive formula can be used to define this sequence for n>1n > 1?\newline11,12,13,14,15,16,11, 12, 13, 14, 15, 16, \ldots\newlineChoices:\newline(A) an=1an1a_n = 1a_{n-1}\newline(B) an=1211an1a_n = \frac{12}{11}a_{n-1}\newline(C) an=an1+1a_n = a_{n-1} + 1\newline(D) an=an11a_n = a_{n-1} - 1
  1. Sequence Type: We have the sequence: 11,12,13,14,15,16,11, 12, 13, 14, 15, 16, \ldots\newlineIs the given sequence geometric or arithmetic?\newlineThe difference between consecutive terms is the same.\newlineThe given sequence is arithmetic.
  2. Find Common Difference: 11,12,13,14,15,16,11, 12, 13, 14, 15, 16, \ldots\newlineFind the common difference, dd.\newlineTwo consecutive terms are 1111 and 1212.\newline1211=112 - 11 = 1\newlineCommon difference (d)(d) is 11.
  3. Recursive Formula: 11,12,13,14,15,16,11, 12, 13, 14, 15, 16, \ldots\newlineIdentify the recursive formula for the given sequence.\newlineSubstitute 11 for dd in an=an1+da_n = a_{n-1} + d.\newlineRecursive formula: an=an1+1a_n = a_{n-1} + 1

More problems from Write a formula for a recursive sequence