Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of these points are 45\sqrt{45} units away from (3,1)(-3,1)? Select all that apply.\newlineMulti-select Choices:\newline(A) (6,5)(-6,-5)\newline(B) (0,7)(0,7)\newline(C) (3,2)(3,-2)\newline(D) (9,4)(-9,4)

Full solution

Q. Which of these points are 45\sqrt{45} units away from (3,1)(-3,1)? Select all that apply.\newlineMulti-select Choices:\newline(A) (6,5)(-6,-5)\newline(B) (0,7)(0,7)\newline(C) (3,2)(3,-2)\newline(D) (9,4)(-9,4)
  1. Calculate Distance Formula: Calculate the distance from each point to (3,1)(-3,1) using the distance formula: Distance=(x2x1)2+(y2y1)2\text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}, where (x1,y1)=(3,1)(x_1, y_1) = (-3,1) and (x2,y2)(x_2, y_2) are the coordinates of each point given.
  2. Point A Calculation: For point A (6,5)(-6,-5): Distance = (6+3)2+(51)2=(3)2+(6)2=9+36=45\sqrt{(-6 + 3)^2 + (-5 - 1)^2} = \sqrt{(-3)^2 + (-6)^2} = \sqrt{9 + 36} = \sqrt{45}.
  3. Point B Calculation: For point B (0,7)(0,7): Distance =(0+3)2+(71)2=32+62=9+36=45= \sqrt{(0 + 3)^2 + (7 - 1)^2} = \sqrt{3^2 + 6^2} = \sqrt{9 + 36} = \sqrt{45}.
  4. Point C Calculation: For point C (3,2)(3,-2): Distance =(3+3)2+(21)2=62+(3)2=36+9=45= \sqrt{(3 + 3)^2 + (-2 - 1)^2} = \sqrt{6^2 + (-3)^2} = \sqrt{36 + 9} = \sqrt{45}.
  5. Point D Calculation: For point D (9,4)(-9,4): Distance = (9+3)2+(41)2=(6)2+32=36+9=45\sqrt{(-9 + 3)^2 + (4 - 1)^2} = \sqrt{(-6)^2 + 3^2} = \sqrt{36 + 9} = \sqrt{45}.

More problems from Estimate square roots