Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which two integers is 223\sqrt[3]{22} between?\newlineChoices:\newline(A) [1 and 2] [1 \text{ and } 2] \newline(B) [15 and 16][15 \text{ and } 16] \newline(C) [16 and 17][16 \text{ and } 17] \newline(D) [2 and 3][2 \text{ and } 3]

Full solution

Q. Which two integers is 223\sqrt[3]{22} between?\newlineChoices:\newline(A) [1 and 2] [1 \text{ and } 2] \newline(B) [15 and 16][15 \text{ and } 16] \newline(C) [16 and 17][16 \text{ and } 17] \newline(D) [2 and 3][2 \text{ and } 3]
  1. Find Perfect Cubes: Find the perfect cubes that are just below and just above 2222.\newlineThe perfect cube just below 2222 is 88 (since 23=82^3 = 8).\newlineThe perfect cube just above 2222 is 2727 (since 33=273^3 = 27).
  2. Calculate Cube Root of 88: Calculate the cube root of 88.\newline2×2×2=82 \times 2 \times 2 = 8\newline23=82^3 = 8\newlineThe cube root of 88 is 22.
  3. Calculate Cube Root of 2727: Calculate the cube root of 2727.\newline3×3×3=273 \times 3 \times 3 = 27\newline33=273^3 = 27\newlineThe cube root of 2727 is 33.
  4. Determine Cube Root of 2222: Determine between which two integers the cube root of 2222 falls.\newlineSince the cube root of 88 is 22 and the cube root of 2727 is 33, we can conclude that:\newline2 < \sqrt[3]{22} < 3\newlineTherefore, the cube root of 2222 falls between the integers 22 and 33.

More problems from Estimate cube roots