Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following is equivalent to 
(log(t))/(log_(8)(t)) ?
Choose 1 answer:
(A) 
log(8)
(B) 
log_(8)(t^(2))
(C) 
(1)/(log(8))
(D) 
(1)/(log_(8)(t^(2)))

Which of the following is equivalent to log(t)log8(t) \frac{\log (t)}{\log _{8}(t)} ?\newlineChoose 11 answer:\newline(A) log(8) \log (8) \newline(B) log8(t2) \log _{8}\left(t^{2}\right) \newline(C) 1log(8) \frac{1}{\log (8)} \newline(D) 1log8(t2) \frac{1}{\log _{8}\left(t^{2}\right)}

Full solution

Q. Which of the following is equivalent to log(t)log8(t) \frac{\log (t)}{\log _{8}(t)} ?\newlineChoose 11 answer:\newline(A) log(8) \log (8) \newline(B) log8(t2) \log _{8}\left(t^{2}\right) \newline(C) 1log(8) \frac{1}{\log (8)} \newline(D) 1log8(t2) \frac{1}{\log _{8}\left(t^{2}\right)}
  1. Multiply by log(8)\log(8): Simplify the expression by multiplying both numerator and denominator by log(8)\log(8).log(t)log(8)log(t)log(8)log(8)\frac{\log(t) \cdot \log(8)}{\frac{\log(t)}{\log(8)} \cdot \log(8)}
  2. Cancel out log(t)\log(t): Cancel out log(t)\log(t) in the numerator and denominator.log(8)\log(8)

More problems from Product property of logarithms