Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following is equivalent to 
(log_(b)(8))/(log_(b)(2)) ?
Choose 1 answer:
(A) 3
(B) 4
(C) 
log_(b)(3)
(D) 
log(4)

Which of the following is equivalent to logb(8)logb(2) \frac{\log _{b}(8)}{\log _{b}(2)} ?\newlineChoose 11 answer:\newline(A) 33\newline(B) 44\newline(C) logb(3) \log _{b}(3) \newline(D) log(4) \log (4)

Full solution

Q. Which of the following is equivalent to logb(8)logb(2) \frac{\log _{b}(8)}{\log _{b}(2)} ?\newlineChoose 11 answer:\newline(A) 33\newline(B) 44\newline(C) logb(3) \log _{b}(3) \newline(D) log(4) \log (4)
  1. Rewrite using change of base formula: Use the change of base formula for logarithms to rewrite the expression.\newlineChange of base formula: loga(c)/loga(b)=logb(c)\log_{a}(c) / \log_{a}(b) = \log_{b}(c)\newline(logb(8))/(logb(2))=log2(8)(\log_{b}(8))/(\log_{b}(2)) = \log_{2}(8)
  2. Evaluate log2(8)\log_{2}(8): Evaluate log2(8)\log_{2}(8) knowing that 23=82^3 = 8.\newlinelog2(8)=log2(23)=3log2(2)\log_{2}(8) = \log_{2}(2^3) = 3 \cdot \log_{2}(2)
  3. Simplify the expression: Simplify the expression using the fact that logb(b)=1\log_{b}(b) = 1.\newline3×log2(2)=3×1=33 \times \log_{2}(2) = 3 \times 1 = 3

More problems from Product property of logarithms