Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which is equal to 3253^{-25}?\newlineChoices:\newline(A) 1325\frac{1}{3^{25}}\newline(B) (3)25(-3)^{25}\newline(C) 1325\frac{1}{3^{-25}}\newline(D) (3)25(-3)^{-25}

Full solution

Q. Which is equal to 3253^{-25}?\newlineChoices:\newline(A) 1325\frac{1}{3^{25}}\newline(B) (3)25(-3)^{25}\newline(C) 1325\frac{1}{3^{-25}}\newline(D) (3)25(-3)^{-25}
  1. Understand Expression: Understand the expression 3253^{-25}. Identify the base and the exponent. In 3253^{-25}, 33 is the base raised to the exponent 25-25. Base: 33 Exponent: 25-25
  2. Identify Base and Exponent: Apply the negative exponent rule.\newlineThe negative exponent rule states that am=1ama^{-m} = \frac{1}{a^m}.\newlineTherefore, 3253^{-25} can be rewritten as 1325\frac{1}{3^{25}}.
  3. Apply Negative Exponent Rule: Match the rewritten expression with the given choices.\newlineThe expression 1325\frac{1}{3^{25}} matches choice (A) 1325\frac{1}{3^{25}}.