Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which is equal to 1919\frac{1}{91^9}?\newlineChoices:\newline(A) 91991^{-9}\newline(B) 91991^9\newline(C) 1(91)9\frac{1}{(-91)^{-9}}\newline(D) (91)9(-91)^9

Full solution

Q. Which is equal to 1919\frac{1}{91^9}?\newlineChoices:\newline(A) 91991^{-9}\newline(B) 91991^9\newline(C) 1(91)9\frac{1}{(-91)^{-9}}\newline(D) (91)9(-91)^9
  1. Understand expression: Understand the given expression 1919\frac{1}{91^9}. The expression is a fraction with 11 in the numerator and 91991^9 in the denominator.
  2. Apply negative exponent rule: Apply the negative exponent rule to rewrite the expression.\newlineThe negative exponent rule states that am=1ama^{-m} = \frac{1}{a^m}. Therefore, we can rewrite 1919\frac{1}{91^9} as 91991^{-9}.
  3. Match with choices: Match the rewritten expression with the given choices.\newlineThe expression 91991^{-9} matches choice (A) 91991^{-9}.

More problems from Negative exponents