Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which is equal to 1925\frac{1}{9^{25}}?\newlineChoices:\newline(A) 925-9^{25}\newline(B) 1(9)25\frac{1}{(-9)^{-25}}\newline(C) (9)25-(-9)^{25}\newline(D) 9259^{-25}

Full solution

Q. Which is equal to 1925\frac{1}{9^{25}}?\newlineChoices:\newline(A) 925-9^{25}\newline(B) 1(9)25\frac{1}{(-9)^{-25}}\newline(C) (9)25-(-9)^{25}\newline(D) 9259^{-25}
  1. Understand Expression: Understand the given expression 1925\frac{1}{9^{25}}. The given expression is a fraction with 11 in the numerator and 9259^{25} in the denominator.
  2. Apply Negative Exponent Rule: Apply the negative exponent rule to rewrite the expression.\newlineThe negative exponent rule states that am=1ama^{-m} = \frac{1}{a^m}. Therefore, 1925\frac{1}{9^{25}} can be rewritten as 9259^{-25}.
  3. Compare with Choices: Compare the rewritten expression with the given choices.\newlineThe expression 9259^{-25} matches choice (D) directly.
  4. Verify Other Choices: Verify that the other choices do not match the given expression.\newline(A) 925-9^{25} is not equivalent because it has a negative base and a positive exponent.\newline(B) 1(9)25\frac{1}{(-9)^{-25}} is not equivalent because it has a negative base and a negative exponent.\newline(C) (9)25-(-9)^{25} is not equivalent because it has a negative base and a positive exponent with an additional negative sign in front.