Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which is equal to 1710\frac{1}{7^{10}}?\newlineChoices:\newline(A) (7)10(-7)^{10}\newline(B) 710-7^{10}\newline(C) 7107^{-10}\newline(D) 1710-\frac{1}{7^{-10}}

Full solution

Q. Which is equal to 1710\frac{1}{7^{10}}?\newlineChoices:\newline(A) (7)10(-7)^{10}\newline(B) 710-7^{10}\newline(C) 7107^{-10}\newline(D) 1710-\frac{1}{7^{-10}}
  1. Understand Expression: Understand the given expression 1710\frac{1}{7^{10}}. The given expression is a fraction with 11 in the numerator and 7107^{10} in the denominator.
  2. Apply Negative Exponent Rule: Identify the equivalent expression using the negative exponent rule.\newlineThe negative exponent rule states that am=1ama^{-m} = \frac{1}{a^m}. Therefore, 1710\frac{1}{7^{10}} can be rewritten using a negative exponent as 7107^{-10}.
  3. Compare Equivalent Expressions: Compare the equivalent expression 7107^{-10} with the given choices.\newline(A) (7)10(-7)^{10} is not equivalent because it represents a positive value due to the even exponent, and the base is 7-7 instead of 77.\newline(B) 710-7^{10} is not equivalent because it represents a negative value, and the base is 7-7 instead of 77.\newline(C) 7107^{-10} is the correct equivalent expression.\newline(D) 1710-\frac{1}{7^{-10}} is not equivalent because it represents a negative value and the negative exponent applies only to 77, not to (7)10(-7)^{10}00.

More problems from Negative exponents