Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What kind of transformation converts the graph of f(x)=x43f(x) = |x - 4| - 3 into the graph of g(x)=x+23g(x) = |x + 2| - 3?\newlineChoices:\newline(A) translation 66 units up\newline(B) translation 66 units right\newline(C) translation 66 units left\newline(D) translation 66 units down

Full solution

Q. What kind of transformation converts the graph of f(x)=x43f(x) = |x - 4| - 3 into the graph of g(x)=x+23g(x) = |x + 2| - 3?\newlineChoices:\newline(A) translation 66 units up\newline(B) translation 66 units right\newline(C) translation 66 units left\newline(D) translation 66 units down
  1. Identify Vertex f(x)f(x): Identify the vertex of the function f(x)=x43f(x) = |x - 4| - 3. The vertex of the absolute value function f(x)=xh+kf(x) = |x - h| + k is (h,k)(h, k). For f(x)=x43f(x) = |x - 4| - 3, h=4h = 4 and k=3k = -3. Vertex of f(x)f(x): (4,3)(4, -3)
  2. Identify Vertex g(x)g(x): Identify the vertex of the function g(x)=x+23g(x) = |x + 2| - 3. Similarly, for g(x)=x+23g(x) = |x + 2| - 3, h=2h = -2 and k=3k = -3. Vertex of g(x)g(x): (2,3)(-2, -3)
  3. Determine Horizontal Shift: Determine the horizontal shift between the vertices of f(x)f(x) and g(x)g(x). The shift in the xx-coordinate from the vertex of f(x)f(x) to the vertex of g(x)g(x) is from 44 to 2-2, which is a shift of 66 units to the left. Shift: 66 units left

More problems from Describe function transformations