Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the volume of a hemisphere with a diameter of 
51.2ft, rounded to the nearest tenth of a cubic foot?
Answer: 
ft^(3)

What is the volume of a hemisphere with a diameter of 51.2ft 51.2 \mathrm{ft} , rounded to the nearest tenth of a cubic foot?\newlineAnswer: ft3 \mathrm{ft}^{3}

Full solution

Q. What is the volume of a hemisphere with a diameter of 51.2ft 51.2 \mathrm{ft} , rounded to the nearest tenth of a cubic foot?\newlineAnswer: ft3 \mathrm{ft}^{3}
  1. Identify Radius: Identify the radius of the hemisphere.\newlineThe diameter of the hemisphere is 51.251.2 feet. The radius is half of the diameter.\newlineRadius == Diameter // 22\newlineRadius == 51.251.2 ft // 22\newlineRadius == 25.625.6 ft
  2. Write Volume Formula: Write down the formula for the volume of a sphere.\newlineThe volume of a sphere is given by the formula:\newlineVolume of a sphere = (43)πr3(\frac{4}{3}) \pi r^3\newlineSince we want the volume of a hemisphere (half of a sphere), we need to divide this by 22.\newlineVolume of a hemisphere = (43)πr32\frac{(\frac{4}{3}) \pi r^3}{2}
  3. Substitute Radius: Substitute the radius into the formula for the volume of a hemisphere. Volume of a hemisphere = (43π(25.6ft)3)/2\left(\frac{4}{3} \cdot \pi \cdot (25.6 \, \text{ft})^3\right) / 2
  4. Calculate Volume: Calculate the volume of the hemisphere.\newlineVolume of a hemisphere = ((4/3)π(25.6 ft)3)/2((4/3) * \pi * (25.6 \text{ ft})^3) / 2\newlineVolume of a hemisphere = ((4/3)π16777.216 ft3)/2((4/3) * \pi * 16777.216 \text{ ft}^3) / 2\newlineVolume of a hemisphere = (4π16777.216 ft3)/6(4 * \pi * 16777.216 \text{ ft}^3) / 6\newlineVolume of a hemisphere = (4π16777.216 ft3)/6(4 * \pi * 16777.216 \text{ ft}^3) / 6\newlineVolume of a hemisphere (43.1415916777.216 ft3)/6\approx (4 * 3.14159 * 16777.216 \text{ ft}^3) / 6\newlineVolume of a hemisphere (43.1415916777.216 ft3)/6\approx (4 * 3.14159 * 16777.216 \text{ ft}^3) / 6\newlineVolume of a hemisphere 223,256.7 ft3/6\approx 223,256.7 \text{ ft}^3 / 6\newlineVolume of a hemisphere 37,209.45 ft3\approx 37,209.45 \text{ ft}^3
  5. Round Volume: Round the volume to the nearest tenth of a cubic foot.\newlineVolume of a hemisphere 37,209.5 ft3\approx 37,209.5 \text{ ft}^3 (rounded to the nearest tenth)

More problems from Volume of cubes and rectangular prisms: word problems