Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A cylindrical soda can has a volume of 
108 pi cubic centimeters 
(cm^(3)) and a height of 
12cm. What is the surface area of the soda can in square centimeters?
Choose 1 answer:
(A) 
18 picm^(2)
(B) 
36 picm^(2)
(C) 
72 picm^(2)
(D) 
90 picm^(2)

A cylindrical soda can has a volume of 108π cm3108\pi\ \text{cm}^{3} and a height of 12cm12\text{cm}. What is the surface area of the soda can in square centimeters?\newlineChoose 11 answer:\newline(A) 18πcm218\pi\text{cm}^{2}\newline(B) 36πcm236\pi\text{cm}^{2}\newline(C) 72πcm272\pi\text{cm}^{2}\newline(D) 90πcm290\pi\text{cm}^{2}

Full solution

Q. A cylindrical soda can has a volume of 108π cm3108\pi\ \text{cm}^{3} and a height of 12cm12\text{cm}. What is the surface area of the soda can in square centimeters?\newlineChoose 11 answer:\newline(A) 18πcm218\pi\text{cm}^{2}\newline(B) 36πcm236\pi\text{cm}^{2}\newline(C) 72πcm272\pi\text{cm}^{2}\newline(D) 90πcm290\pi\text{cm}^{2}
  1. Identify Given Information: Identify the given information and the formula for the volume of a cylinder.\newlineVolume of a cylinder VV = πr2h\pi r^2 h, where rr is the radius and hh is the height.\newlineGiven: V=108πcm3V = 108\pi \, \text{cm}^3 and h=12cmh = 12 \, \text{cm}.\newlineWe need to find the radius rr of the cylinder first.
  2. Use Volume Formula: Use the volume formula to solve for the radius.\newline108π=πr2(12)108\pi = \pi r^2(12)\newlineDivide both sides by π\pi to simplify.\newline108=r2(12)108 = r^2(12)
  3. Solve for Radius: Divide both sides by 1212 to isolate r2r^2.\newline10812=r2\frac{108}{12} = r^2\newline9=r29 = r^2
  4. Find Surface Area Formula: Take the square root of both sides to solve for rr.9=r\sqrt{9} = r3cm=r3 \, \text{cm} = rNow we have the radius of the cylinder.
  5. Substitute Values: Identify the formula for the surface area of a cylinder.\newlineSurface area SA=2πrh+2πr2SA = 2\pi rh + 2\pi r^2, where SASA is the surface area, rr is the radius, and hh is the height.\newlineWe have r=3r = 3 cm and h=12h = 12 cm.
  6. Combine Terms: Substitute the values of rr and hh into the surface area formula.\newlineSA=2π(3)(12)+2π(3)2SA = 2\pi(3)(12) + 2\pi(3)^2\newlineSA=2π(36)+2π(9)SA = 2\pi(36) + 2\pi(9)\newlineSA=72π+18πSA = 72\pi + 18\pi
  7. Combine Terms: Substitute the values of rr and hh into the surface area formula.SA=2π(3)(12)+2π(3)2SA = 2\pi(3)(12) + 2\pi(3)^2SA=2π(36)+2π(9)SA = 2\pi(36) + 2\pi(9)SA=72π+18πSA = 72\pi + 18\piCombine the terms to find the total surface area.SA=72π+18πSA = 72\pi + 18\piSA=90πcm2SA = 90\pi \, \text{cm}^2The surface area of the soda can is 90π90\pi square centimeters.

More problems from Volume of cubes and rectangular prisms: word problems