Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the value of 
A when we rewrite 
2^(x-6)+2^(x) as 
A*2^(x) ?

A=

What is the value of A A when we rewrite 2x6+2x 2^{x-6}+2^{x} as A2x A \cdot 2^{x} ?\newlineA= A=

Full solution

Q. What is the value of A A when we rewrite 2x6+2x 2^{x-6}+2^{x} as A2x A \cdot 2^{x} ?\newlineA= A=
  1. Factor out common base: Factor out the common base of 22 raised to the power of xx from both terms.\newlineWe have 2x6+2x2^{x-6} + 2^{x}. To factor out 2x2^{x}, we need to express 2x62^{x-6} in terms of 2x2^{x}.\newlineUsing the property of exponents that amn=am/ana^{m-n} = a^m / a^n, we can write 2x62^{x-6} as 2x/262^{x} / 2^6.
  2. Rewrite in terms of 2x2^{x}: Rewrite 2x62^{x-6} in terms of 2x2^{x}.\newline2x6=2x/26=2x×1/26=2x×1/642^{x-6} = 2^{x} / 2^{6} = 2^{x} \times 1/2^{6} = 2^{x} \times 1/64\newlineNow we can rewrite the original expression as:\newline2x6+2x=2x×1/64+2x2^{x-6} + 2^{x} = 2^{x} \times 1/64 + 2^{x}
  3. Factor out 2x2^{x}: Factor 2x2^{x} out of the expression.\newlineWe can now factor 2x2^{x} out of both terms to get:\newline2x×164+2x=2x×(164+1)2^{x} \times \frac{1}{64} + 2^{x} = 2^{x} \times (\frac{1}{64} + 1)
  4. Simplify inside parentheses: Simplify the expression inside the parentheses.\newline164+1\frac{1}{64} + 1 can be rewritten as 164+6464\frac{1}{64} + \frac{64}{64} to have a common denominator.\newline164+6464=(1+64)64=6564\frac{1}{64} + \frac{64}{64} = \frac{(1 + 64)}{64} = \frac{65}{64}
  5. Combine with factored out 2x2^{x}: Combine the simplified expression with the factored out 2x2^{x}. Now we have: 2x×(164+1)=2x×65642^{x} \times (\frac{1}{64} + 1) = 2^{x} \times \frac{65}{64} This means that AA is 6564\frac{65}{64}.

More problems from Solve exponential equations by rewriting the base