Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the total number of different 10-letter arrangements that can be formed using the letters in the word COMMISSION?
Answer:

What is the total number of different 1010-letter arrangements that can be formed using the letters in the word COMMISSION?\newlineAnswer:

Full solution

Q. What is the total number of different 1010-letter arrangements that can be formed using the letters in the word COMMISSION?\newlineAnswer:
  1. Count Letters: Count the number of each letter in COMMISSION.\newlineC=1C=1, O=2O=2, M=2M=2, I=2I=2, S=2S=2, N=1N=1.
  2. Calculate Total Factorial: Calculate the factorial of the total number of letters. 10!=10×9×8×7×6×5×4×3×2×110! = 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1.
  3. Divide by Repeating Factorials: Divide by the factorial of the number of times each letter repeats to correct for overcounting.\newlineThe equation is 10!/(2!×2!×2!×2!)10! / (2! \times 2! \times 2! \times 2!).
  4. Do the Math: Do the math: 10!(2!×2!×2!×2!)=(10×9×8×7×6×5×4×3×2×1)(2×2×2×2)\frac{10!}{(2! \times 2! \times 2! \times 2!)} = \frac{(10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1)}{(2 \times 2 \times 2 \times 2)}.
  5. Simplify Equation: Simplify the equation: 10!(2!×2!×2!×2!)=(10×9×8×7×6×5×4×3)(2×2×2)\frac{10!}{(2! \times 2! \times 2! \times 2!)} = \frac{(10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3)}{(2 \times 2 \times 2)}.
  6. Calculate Result: Calculate the result: (10×9×8×7×6×5×4×3)/(2×2×2)=453600(10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3) / (2 \times 2 \times 2) = 453600.

More problems from Write a linear function: word problems