Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the slope of the line through 
(-1,8) and 
(3,-4) ?
Choose 1 answer:
(A) 3
(B) 
-(1)/(3)
(c) 
(1)/(3)
(D) -3

What is the slope of the line through (1,8) (-1,8) and (3,4) (3,-4) ?\newlineChoose 11 answer:\newline(A) 33\newline(B) 13 -\frac{1}{3} \newline(C) 13 \frac{1}{3} \newline(D) 3-3

Full solution

Q. What is the slope of the line through (1,8) (-1,8) and (3,4) (3,-4) ?\newlineChoose 11 answer:\newline(A) 33\newline(B) 13 -\frac{1}{3} \newline(C) 13 \frac{1}{3} \newline(D) 3-3
  1. Identify slope formula: Identify the slope formula.\newlineThe slope of a line is calculated by the change in yy-coordinates divided by the change in xx-coordinates.\newlineSlope formula: y2y1x2x1\frac{y_2 - y_1}{x_2 - x_1}
  2. Substitute given points: Substitute the given points into the slope formula.\newlineWe have the points (1,8)(-1, 8) and (3,4)(3, -4). Let's denote (1,8)(-1, 8) as (x1,y1)(x_1, y_1) and (3,4)(3, -4) as (x2,y2)(x_2, y_2).\newlineSlope: 483(1)\frac{-4 - 8}{3 - (-1)}
  3. Calculate change in y: Calculate the change in y-coordinates.\newlineChange in y: 48=12-4 - 8 = -12
  4. Calculate change in x: Calculate the change in x-coordinates.\newlineChange in x: 3(1)=3+1=43 - (-1) = 3 + 1 = 4
  5. Calculate slope: Calculate the slope using the changes in yy and xx.\newlineSlope: 12/4=3-12 / 4 = -3

More problems from Find the slope from two points