Q. What is the average value of 14−6x2 on the interval [−1,3] ?
Calculate Interval Width: To find the average value of a function f(x) on the interval [a,b], we use the formula:Average value = (b−a)1⋅∫abf(x)dxHere, f(x)=14−6x2, a=−1, and b=3.
Set Up Integral: First, calculate the width of the interval [a,b] by subtracting a from b.Width = b−a=3−(−1)=3+1=4
Calculate Integral: Now, set up the integral to find the average value.Average value = (1/4)×∫−13(14−6x2)dx
Evaluate Integral Limits: Calculate the integral of the function f(x)=14−6x2.∫(14−6x2)dx=14x−36x3=14x−2x3
Subtract Integral Values: Evaluate the integral from −1 to 3.Plug in the upper limit of the integral:14(3)−2(3)3=42−2(27)=42−54=−12Plug in the lower limit of the integral:14(−1)−2(−1)3=−14−2(−1)=−14+2=−12
Subtract Integral Values: Evaluate the integral from −1 to 3.Plug in the upper limit of the integral:14(3)−2(3)3=42−2(27)=42−54=−12Plug in the lower limit of the integral:14(−1)−2(−1)3=−14−2(−1)=−14+2=−12Now, subtract the value of the integral at the lower limit from the value at the upper limit.Integral from −1 to 3 = (−12)−(−12)=−12+12=0