Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the period of

y=4sin(-2x+7)-1" ? "
Give an exact value.
units

What is the period of\newliney=4sin(2x+7)1 ?  y=4 \sin (-2 x+7)-1 \text { ? } \newlineGive an exact value.\newlineunits

Full solution

Q. What is the period of\newliney=4sin(2x+7)1 ?  y=4 \sin (-2 x+7)-1 \text { ? } \newlineGive an exact value.\newlineunits
  1. Identify Sine Function Form: Identify the general form of a sine function and its period.\newlineThe general form of a sine function is y=Asin(Bx+C)+Dy = A \sin(Bx + C) + D, where the period is given by 2πB\frac{2\pi}{|B|}.
  2. Substitute Given Values: Substitute the given values into the formula to find the period.\newlineGiven y=4sin(2x+7)1y = 4\sin(-2x + 7) - 1, we identify B=2B = -2. The period is then calculated as 2π2=2π2\frac{2\pi}{|{-2}|} = \frac{2\pi}{2}.
  3. Simplify Expression: Simplify the expression to find the exact value of the period. \newline2π2\frac{2\pi}{2} simplifies to π\pi. Therefore, the period of the function y=4sin(2x+7)1y = 4\sin(-2x + 7) - 1 is π\pi units.

More problems from Powers of i