Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the area of the region between the graphs of 
f(x)=(4)/(x) ,
g(x)=4, and 
x=4 ?
Choose 1 answer:
(A) 
24-4ln(4)
(B) 
12-4ln(3)
(C) 
12-4ln(4)
(D) 
24-4ln(3)

What is the area of the region between the graphs of f(x)=4x f(x)=\frac{4}{x} ,g(x)=4 g(x)=4 , and x=4 x=4 ?\newlineChoose 11 answer:\newline(A) 244ln(4) 24-4 \ln (4) \newline(B) 124ln(3) 12-4 \ln (3) \newline(C) 124ln(4) 12-4 \ln (4) \newline(D) 244ln(3) 24-4 \ln (3)

Full solution

Q. What is the area of the region between the graphs of f(x)=4x f(x)=\frac{4}{x} ,g(x)=4 g(x)=4 , and x=4 x=4 ?\newlineChoose 11 answer:\newline(A) 244ln(4) 24-4 \ln (4) \newline(B) 124ln(3) 12-4 \ln (3) \newline(C) 124ln(4) 12-4 \ln (4) \newline(D) 244ln(3) 24-4 \ln (3)
  1. Set Up Integral: To find the area between the curves, we need to set up an integral from the left boundary to the right boundary of the region. The left boundary is where the two functions intersect, which we need to find.
  2. Find Intersection Point: To find the intersection point of f(x)f(x) and g(x)g(x), we set f(x)f(x) equal to g(x)g(x) and solve for xx:(4x)=4(\frac{4}{x}) = 4Multiplying both sides by xx to clear the fraction, we get:4=4x4 = 4xDividing both sides by 44, we get:1=x1 = xSo, the left boundary is x=1x = 1.
  3. Calculate Area Integral: The area AA between the curves from x=1x = 1 to x=4x = 4 is given by the integral of the top function minus the bottom function. Since g(x)=4g(x) = 4 is above f(x)=4xf(x) = \frac{4}{x} in this interval, we have:\newlineA=14(g(x)f(x))dxA = \int_{1}^{4} (g(x) - f(x)) \, dx\newlineA=14(44x)dxA = \int_{1}^{4} \left(4 - \frac{4}{x}\right) dx
  4. Evaluate Integral: We can now evaluate the integral:\newlineA=14(44x)dxA = \int_{1}^{4} (4 - \frac{4}{x}) \, dx\newlineA=144dx144xdxA = \int_{1}^{4} 4 \, dx - \int_{1}^{4} \frac{4}{x} \, dx\newlineA=[4x]14[4lnx]14A = [4x]_{1}^{4} - [4\ln|x|]_{1}^{4}
  5. Plug in Limits: Plugging in the limits of integration, we get:\newlineA=(4×44×1)(4ln44ln1)A = (4\times 4 - 4\times 1) - (4\ln|4| - 4\ln|1|)\newlineA=(164)(4ln(4)4ln(1))A = (16 - 4) - (4\ln(4) - 4\ln(1))\newlineSince ln(1)=0\ln(1) = 0, we simplify further:\newlineA=124ln(4)A = 12 - 4\ln(4)
  6. Compare with Answer: Comparing our result with the answer choices, we see that our answer matches option (C)(C).

More problems from Simplify exponential expressions using the multiplication and division rules