Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=4xf(x) = -4x\newlineg(x)=2x22g(x) = 2x^2 - 2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=4xf(x) = -4x\newlineg(x)=2x22g(x) = 2x^2 - 2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify Formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Given Functions: We have: \newlinef(x)=4xf(x) = -4x \newlineg(x)=2x22g(x) = 2x^2 - 2 \newlineNow, we need to multiply these two functions to find (fg)(x)(f * g)(x).\newline(fg)(x)=(4x)(2x22)(f * g)(x) = (-4x) * (2x^2 - 2)
  3. Distribute 4x-4x: Distribute 4x-4x to each term in the second function.\newline(fg)(x)=(4x)(2x2)+(4x)(2)(f * g)(x) = (-4x) * (2x^2) + (-4x) * (-2)
  4. Perform Multiplication: Perform the multiplication.\newline(fg)(x)=8x3+8x(f \cdot g)(x) = -8x^3 + 8x
  5. Express Answer: Express your answer as a simplified polynomial.\newlineThe polynomial is already in its simplest form, so we do not need to combine any like terms.\newline(fg)(x)=8x3+8x(f * g)(x) = -8x^3 + 8x

More problems from Add and subtract functions