Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=4x+3f(x) = -4x + 3\newlineg(x)=3x2g(x) = 3x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=4x+3f(x) = -4x + 3\newlineg(x)=3x2g(x) = 3x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Define product: We have:\newlinef(x)=4x+3f(x) = -4x + 3\newlineg(x)=3x2g(x) = 3x^2\newlineTo find (fg)(x)(f * g)(x), we need to multiply f(x)f(x) by g(x)g(x).\newline(fg)(x)=(4x+3)(3x2)(f * g)(x) = (-4x + 3) * (3x^2)
  3. Multiply functions: Distribute 3x23x^2 to each term in f(x)f(x).
    (fg)(x)=(4x3x2)+(33x2)(f * g)(x) = (-4x * 3x^2) + (3 * 3x^2)
  4. Distribute terms: Perform the multiplication.\newline(fg)(x)=12x3+9x2(f * g)(x) = -12x^3 + 9x^2

More problems from Add and subtract functions