Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=3x+5f(x) = 3x + 5\newlineg(x)=x2g(x) = -x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=3x+5f(x) = 3x + 5\newlineg(x)=x2g(x) = -x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify Formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Define Functions: We have:\newlinef(x)=3x+5f(x) = 3x + 5\newlineg(x)=x2g(x) = -x^2\newlineTo find (fg)(x)(f * g)(x), we need to multiply f(x)f(x) by g(x)g(x).\newline(fg)(x)=(3x+5)(x2)(f * g)(x) = (3x + 5) * (-x^2)
  3. Multiply Functions: Distribute x2-x^2 to each term in the polynomial 3x+53x + 5.
    (fg)(x)=3x(x2)+5(x2)(f * g)(x) = 3x * (-x^2) + 5 * (-x^2)
  4. Distribute Terms: Perform the multiplication for each term.\newline(fg)(x)=3x35x2(f * g)(x) = -3x^3 - 5x^2

More problems from Add and subtract functions