Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=3x+4f(x) = -3x + 4\newlineg(x)=2x2g(x) = -2x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=3x+4f(x) = -3x + 4\newlineg(x)=2x2g(x) = -2x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify Formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Given Functions: We have:\newlinef(x)=3x+4f(x) = -3x + 4\newlineg(x)=2x2g(x) = -2x^2\newlineNow, we need to multiply these two functions to find (fg)(x)(f * g)(x).\newline(fg)(x)=(3x+4)(2x2)(f * g)(x) = (-3x + 4) * (-2x^2)
  3. Multiply Functions: Distribute each term in the first polynomial by each term in the second polynomial.\newline(fg)(x)=(3x2x2)+(42x2)(f * g)(x) = (-3x * -2x^2) + (4 * -2x^2)
  4. Distribute Terms: Perform the multiplication for each term.\newline(fg)(x)=6x3+(8x2)(f * g)(x) = 6x^3 + (-8x^2)
  5. Perform Multiplication: Combine the like terms if there are any. In this case, there are no like terms to combine.\newlineSo, the final simplified form of the polynomial is:\newline(fg)(x)=6x38x2(f * g)(x) = 6x^3 - 8x^2

More problems from Add and subtract functions