Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=3x+3f(x) = -3x + 3\newlineg(x)=3x2g(x) = 3x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=3x+3f(x) = -3x + 3\newlineg(x)=3x2g(x) = 3x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify Formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Define Functions: We have: \newlinef(x)=3x+3f(x) = -3x + 3 \newlineg(x)=3x2g(x) = 3x^2 \newlineNow, we need to multiply these two functions to find (fg)(x)(f * g)(x).\newline(fg)(x)=(3x+3)(3x2)(f * g)(x) = (-3x + 3) * (3x^2)
  3. Multiply Functions: Distribute each term in f(x)f(x) to each term in g(x)g(x) to find the product.(fg)(x)=(3x3x2)+(33x2)(f * g)(x) = (-3x * 3x^2) + (3 * 3x^2)
  4. Distribute Terms: Perform the multiplication for each term.\newline(fg)(x)=9x3+9x2(f * g)(x) = -9x^3 + 9x^2

More problems from Add and subtract functions