Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=3x2xf(x) = -3x^2 - x\newlineg(x)=3xg(x) = 3x\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=3x2xf(x) = -3x^2 - x\newlineg(x)=3xg(x) = 3x\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Define product: We have:\newlinef(x)=3x2xf(x) = -3x^2 - x\newlineg(x)=3xg(x) = 3x\newlineNow we need to multiply these two functions together.
  3. Given functions: Multiply the functions.\newline(fg)(x)=(3x2x)(3x)(f * g)(x) = (-3x^2 - x) * (3x)\newline(fg)(x)=(3x23x)+(x3x)(f * g)(x) = (-3x^2 * 3x) + (-x * 3x)\newline(fg)(x)=9x33x2(f * g)(x) = -9x^3 - 3x^2

More problems from Add and subtract functions