Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=3x2xf(x) = -3x^2 - x\newlineg(x)=2xg(x) = 2x\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=3x2xf(x) = -3x^2 - x\newlineg(x)=2xg(x) = 2x\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Given functions: We have: \newlinef(x)=3x2xf(x) = -3x^2 - x \newlineg(x)=2xg(x) = 2x \newlineTo find (fg)(x)(f * g)(x), we need to multiply f(x)f(x) by g(x)g(x). \newline(fg)(x)=(3x2x)(2x)(f * g)(x) = (-3x^2 - x) * (2x)
  3. Distribute terms: Distribute 2x2x to each term in f(x)f(x).$(fg)(x)=3x22xx2x\$(f * g)(x) = -3x^2 * 2x - x * 2x
  4. Perform multiplication: Perform the multiplication.\newline(fg)(x)=6x32x2(f \cdot g)(x) = -6x^3 - 2x^2

More problems from Add and subtract functions