Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=3x+1f(x) = -3x + 1\newlineg(x)=3x2g(x) = -3x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=3x+1f(x) = -3x + 1\newlineg(x)=3x2g(x) = -3x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify Formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Calculate Product: We have:\newlinef(x)=3x+1f(x) = -3x + 1\newlineg(x)=3x2g(x) = -3x^2\newlineNow, we need to multiply these two functions to find (fg)(x)(f * g)(x).\newline(fg)(x)=(3x+1)(3x2)(f * g)(x) = (-3x + 1) * (-3x^2)
  3. Distribute Terms: Distribute each term in the first polynomial by each term in the second polynomial.\newline(fg)(x)=(3x3x2)+(13x2)(f * g)(x) = (-3x * -3x^2) + (1 * -3x^2)\newline(fg)(x)=9x33x2(f * g)(x) = 9x^3 - 3x^2

More problems from Add and subtract functions