Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=2x+6f(x) = 2x + 6\newlineg(x)=3xg(x) = -3x\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=2x+6f(x) = 2x + 6\newlineg(x)=3xg(x) = -3x\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Given functions: We have: \newlinef(x)=2x+6f(x) = 2x + 6 \newlineg(x)=3xg(x) = -3x \newlineWhich function represents (fg)(x)(f * g)(x)?\newline(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)\newline(fg)(x)=(2x+6)(3x)(f * g)(x) = (2x + 6) * (-3x)
  3. Distribute 3x-3x: We found: \newline(fg)(x)=(2x+6)(3x)(f * g)(x) = (2x + 6) * (-3x) \newlineNow, distribute 3x-3x to both terms in the parentheses.\newline(fg)(x)=2x(3x)+6(3x)(f * g)(x) = 2x * (-3x) + 6 * (-3x)
  4. Perform multiplication: Perform the multiplication.\newline(fg)(x)=6x218x(f \cdot g)(x) = -6x^2 - 18x\newlineExpress your answer as a simplified polynomial.

More problems from Add and subtract functions