Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Vector 
vec(AB) has a terminal point 
(7,9), an 
x component of 11 , and a 
y component of 12 .
Find the coordinates of the initial point, 
A.

A=(◻,◻)

Vector ABundefined \overrightarrow{A B} has a terminal point (7,9) (7,9) , an x x component of 1111 , and a y y component of 1212 .\newlineFind the coordinates of the initial point, A A .\newlineA=(,) A=(\square, \square)

Full solution

Q. Vector ABundefined \overrightarrow{A B} has a terminal point (7,9) (7,9) , an x x component of 1111 , and a y y component of 1212 .\newlineFind the coordinates of the initial point, A A .\newlineA=(,) A=(\square, \square)
  1. Find Initial Point A: To find the initial point AA of the vector AB\vec{AB}, we need to subtract the vector's components from the terminal point's coordinates.\newlineGiven:\newlineTerminal point B=(7,9)B = (7, 9)\newlinex component of AB=11\vec{AB} = 11\newliney component of AB=12\vec{AB} = 12\newlineThe initial point AA can be found using the following formulas:\newlineAx=BxABxA_x = B_x - \vec{AB}_x\newlineAy=ByAByA_y = B_y - \vec{AB}_y
  2. Calculate AxA_x: Calculate the x-coordinate of the initial point A using the formula:\newlineAx=BxABxA_x = B_x - \vec{AB}_x\newlineAx=711A_x = 7 - 11\newlineAx=4A_x = -4
  3. Calculate AyA_y: Calculate the y-coordinate of the initial point AA using the formula:\newlineAy=ByAByA_y = B_y - \vec{AB}_y\newlineAy=912A_y = 9 - 12\newlineAy=3A_y = -3

More problems from Write equations of cosine functions using properties