Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

V=pir^(2)h
The formula gives the volume 
V of a right circular cylinder with radius 
r and height 
h. What is the volume, in cubic centimeters, of a right circular cylinder with a radius of 2 centimeters and a height of 20 centimeters?
Choose 1 answer:
(A) 
40 pi
(B) 
80 pi
(C) 
400 pi
(D) 
800 pi

V=πr2hV=\pi r^{2}h\newlineThe formula gives the volume VV of a right circular cylinder with radius rr and height hh. What is the volume, in cubic centimeters, of a right circular cylinder with a radius of 22 centimeters and a height of 2020 centimeters?\newlineChoose 11 answer:\newline(A) 40π40 \pi\newline(B) 80π80 \pi\newline(C) 400π400 \pi\newline(D) 800π800 \pi

Full solution

Q. V=πr2hV=\pi r^{2}h\newlineThe formula gives the volume VV of a right circular cylinder with radius rr and height hh. What is the volume, in cubic centimeters, of a right circular cylinder with a radius of 22 centimeters and a height of 2020 centimeters?\newlineChoose 11 answer:\newline(A) 40π40 \pi\newline(B) 80π80 \pi\newline(C) 400π400 \pi\newline(D) 800π800 \pi
  1. Identify values: Identify the given values for the radius and height of the cylinder.\newlineRadius r=2r = 2 cm\newlineHeight h=20h = 20 cm\newlineWe will use the formula for the volume of a right circular cylinder, which is V=πr2hV = \pi r^2 h.
  2. Substitute values: Substitute the given values into the volume formula. V=π×(2cm)2×20cmV = \pi \times (2 \, \text{cm})^2 \times 20 \, \text{cm}
  3. Calculate radius squared: Calculate the radius squared.\newline(2cm)2=4cm2(2 \, \text{cm})^2 = 4 \, \text{cm}^2
  4. Multiply base area: Multiply the area of the base by the height to find the volume.\newlineV=π×4cm2×20cmV = \pi \times 4 \, \text{cm}^2 \times 20 \, \text{cm}\newlineV=80πcm3V = 80\pi \, \text{cm}^3
  5. Match with answer choices: Match the calculated volume with the given answer choices.\newlineThe volume of the cylinder is 80π80\pi cubic centimeters, which corresponds to answer choice (B)(B).

More problems from Volume of cubes and rectangular prisms: word problems