Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Use the Binomial Theorem to complete the expansion of
(
y
+
z
)
2
(y + z)^2
(
y
+
z
)
2
.
\newline
y
□
+
2
y
z
+
z
2
y^\square + 2yz + z^2
y
□
+
2
yz
+
z
2
View step-by-step help
Home
Math Problems
Precalculus
Binomial Theorem II
Full solution
Q.
Use the Binomial Theorem to complete the expansion of
(
y
+
z
)
2
(y + z)^2
(
y
+
z
)
2
.
\newline
y
□
+
2
y
z
+
z
2
y^\square + 2yz + z^2
y
□
+
2
yz
+
z
2
Binomial Theorem Explanation:
The Binomial Theorem states that
(
a
+
b
)
n
=
∑
k
=
0
n
(
n
k
)
⋅
a
n
−
k
⋅
b
k
(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} \cdot a^{n-k} \cdot b^k
(
a
+
b
)
n
=
∑
k
=
0
n
(
k
n
)
⋅
a
n
−
k
⋅
b
k
. For
(
y
+
z
)
2
(y + z)^2
(
y
+
z
)
2
,
n
=
2
n=2
n
=
2
.
First Term Calculation:
First term:
(
(
2
0
)
⋅
y
(
2
−
0
)
⋅
z
0
=
1
⋅
y
2
⋅
1
=
y
2
)
(2 \choose 0) \cdot y^{(2-0)} \cdot z^0 = 1 \cdot y^2 \cdot 1 = y^2
(
0
)
⋅
y
(
2
−
0
)
⋅
z
0
=
1
⋅
y
2
⋅
1
=
y
2
(
2
)
.
Second Term Calculation:
Second term:
(
2
1
)
⋅
y
2
−
1
⋅
z
1
=
2
⋅
y
⋅
z
=
2
y
z
\binom{2}{1} \cdot y^{2-1} \cdot z^1 = 2 \cdot y \cdot z = 2yz
(
1
2
)
⋅
y
2
−
1
⋅
z
1
=
2
⋅
y
⋅
z
=
2
yz
.
Third Term Calculation:
Third term:
(
(
2
2
)
⋅
y
(
2
−
2
)
⋅
z
2
=
1
⋅
1
⋅
z
2
=
z
2
)
(2 \choose 2) \cdot y^{(2-2)} \cdot z^2 = 1 \cdot 1 \cdot z^2 = z^2
(
2
)
⋅
y
(
2
−
2
)
⋅
z
2
=
1
⋅
1
⋅
z
2
=
z
2
(
2
)
.
Combining All Terms:
Combine all terms:
y
2
+
2
y
z
+
z
2
y^2 + 2yz + z^2
y
2
+
2
yz
+
z
2
.
More problems from Binomial Theorem II
Question
Find the degree of this polynomial.
\newline
`5b^{10} + 3b^3`
\newline
_______
Get tutor help
Posted 5 months ago
Question
Subtract.
\newline
(
9
a
+
5
)
−
(
2
a
+
4
)
(9a + 5) - (2a + 4)
(
9
a
+
5
)
−
(
2
a
+
4
)
\newline
____
Get tutor help
Posted 5 months ago
Question
Find the product. Simplify your answer.
\newline
−
3
v
2
(
v
2
−
9
)
-3v^2(v^2 - 9)
−
3
v
2
(
v
2
−
9
)
\newline
________
Get tutor help
Posted 5 months ago
Question
Find the product. Simplify your answer.
\newline
(
v
−
3
)
(
4
v
+
1
)
(v - 3)(4v + 1)
(
v
−
3
)
(
4
v
+
1
)
\newline
______
Get tutor help
Posted 5 months ago
Question
Find the square. Simplify your answer.
\newline
(
3
y
+
2
)
2
(3y + 2)^2
(
3
y
+
2
)
2
\newline
______
Get tutor help
Posted 5 months ago
Question
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
24
t
2
+
36
t
)
÷
6
t
(24t^2 + 36t) \div 6t
(
24
t
2
+
36
t
)
÷
6
t
\newline
______
Get tutor help
Posted 5 months ago
Question
Is the function
q
(
x
)
=
x
6
−
9
q(x) = x^6 - 9
q
(
x
)
=
x
6
−
9
even, odd, or neither?
\newline
Choices:
\newline
[[even][odd][neither]]
\text{[[even][odd][neither]]}
[[even][odd][neither]]
Get tutor help
Posted 9 months ago
Question
Find the product. Simplify your answer.
\newline
−
3
q
2
(
−
3
q
2
+
q
)
-3q^2(-3q^2 + q)
−
3
q
2
(
−
3
q
2
+
q
)
\newline
______
Get tutor help
Posted 9 months ago
Question
Find the product. Simplify your answer.
\newline
(
r
+
3
)
(
4
r
+
2
)
(r + 3)(4r + 2)
(
r
+
3
)
(
4
r
+
2
)
\newline
______
Get tutor help
Posted 9 months ago
Question
Find the roots of the factored polynomial.
\newline
(
x
+
7
)
(
x
+
4
)
(x + 7)(x + 4)
(
x
+
7
)
(
x
+
4
)
\newline
Write your answer as a list of values separated by commas.
\newline
x
=
x =
x
=
____
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant