Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use the appropriate formula to find the future value (in $\$) of $700\$700 deposited at the beginning of every six months, for 1717 years if a bank pays 8%8\% interest, compounded semiannually. (Round your answers to the nearest cent.)

Full solution

Q. Use the appropriate formula to find the future value (in $\$) of $700\$700 deposited at the beginning of every six months, for 1717 years if a bank pays 8%8\% interest, compounded semiannually. (Round your answers to the nearest cent.)
  1. Identify Formula: Identify the formula for the future value of an annuity due to regular deposits and compound interest.\newlineThe formula for the future value of an annuity due is:\newlineFV=P×((1+r)n1r)×(1+r) FV = P \times \left( \frac{(1 + r)^n - 1}{r} \right) \times (1 + r) \newlinewhere:\newline- FV FV is the future value of the annuity.\newline- P P is the payment amount per period.\newline- r r is the interest rate per period.\newline- n n is the total number of periods.
  2. Determine Values: Determine the values of P P , r r , and n n for this problem.\newline P = $700 (the deposit made every six months)\newlineThe annual interest rate is 88%, so the semiannual rate is 8%2=4% \frac{8\%}{2} = 4\% or r=0.04 r = 0.04 .\newlineThere are 1717 years with two periods per year, so n=17×2=34 n = 17 \times 2 = 34 periods.
  3. Substitute and Calculate: Substitute the values into the formula and calculate the future value.\newlineFV=700×((1+0.04)3410.04)×(1+0.04) FV = 700 \times \left( \frac{(1 + 0.04)^{34} - 1}{0.04} \right) \times (1 + 0.04)
  4. Calculate Future Value: Calculate the future value using the values provided.\newlineFirst, calculate (1+r)n (1 + r)^n :\newline(1+0.04)34 (1 + 0.04)^{34} \newlineUse a calculator to find this value.
  5. Calculate (11 + 00.0404)^{3434}: Calculate (1+0.04)34 (1 + 0.04)^{34} .\newline(1+0.04)343.243 (1 + 0.04)^{34} \approx 3.243
  6. Calculate Rest of Formula: Now, calculate the rest of the formula.\newlineFV=700×(3.24310.04)×1.04 FV = 700 \times \left( \frac{3.243 - 1}{0.04} \right) \times 1.04
  7. Simplify Expression: Simplify the expression inside the parentheses.\newline3.24310.0456.075 \frac{3.243 - 1}{0.04} \approx 56.075
  8. Multiply Result: Multiply the result by P P and (1+r) (1 + r) .\newlineFV=700×56.075×1.04 FV = 700 \times 56.075 \times 1.04
  9. Calculate Final Value: Calculate the final future value.\newlineFV700×56.075×1.0440,732.60 FV \approx 700 \times 56.075 \times 1.04 \approx 40,732.60 \newlineRound to the nearest cent.

More problems from Exponential growth and decay: word problems