Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Use properties of logarithms to evaluate the expression.
log
5
5
+
log
5
25
\log_5 5 + \log_5 25
lo
g
5
5
+
lo
g
5
25
View step-by-step help
Home
Math Problems
Algebra 2
Evaluate logarithms using properties
Full solution
Q.
Use properties of logarithms to evaluate the expression.
log
5
5
+
log
5
25
\log_5 5 + \log_5 25
lo
g
5
5
+
lo
g
5
25
Sum of logs:
Sum of logs:
log
5
5
+
log
5
25
\log_5 5 + \log_5 25
lo
g
5
5
+
lo
g
5
25
\newline
Use product property:
log
b
P
+
log
b
Q
=
log
b
(
P
Q
)
\log_b P + \log_b Q = \log_b (PQ)
lo
g
b
P
+
lo
g
b
Q
=
lo
g
b
(
PQ
)
Apply product property:
Apply product property:
log
5
5
+
log
5
25
=
log
5
(
5
⋅
25
)
\log_5 5 + \log_5 25 = \log_5 (5 \cdot 25)
lo
g
5
5
+
lo
g
5
25
=
lo
g
5
(
5
⋅
25
)
Simplify inside log:
\newline
log
5
(
5
⋅
25
)
=
log
5
125
\log_5 (5 \cdot 25) = \log_5 125
lo
g
5
(
5
⋅
25
)
=
lo
g
5
125
Express
125
125
125
as power:
\newline
125
=
5
3
125 = 5^3
125
=
5
3
\newline
So,
log
5
125
=
log
5
(
5
3
)
\log_5 125 =\log_5 (5^3)
lo
g
5
125
=
lo
g
5
(
5
3
)
Use power property:
\newline
log
b
(
P
Q
)
=
Q
⋅
log
b
P
\log_b (P^Q) = Q \cdot \log_b P
lo
g
b
(
P
Q
)
=
Q
⋅
lo
g
b
P
\newline
So,
log
5
(
5
3
)
=
3
⋅
log
5
5
\log_5 (5^3) = 3 \cdot \log_5 5
lo
g
5
(
5
3
)
=
3
⋅
lo
g
5
5
Evaluate:
Evaluate:
3
×
log
5
5
3 \times\log_5 5
3
×
lo
g
5
5
\newline
Since,
log
5
5
=
1
\log_5 5 = 1
lo
g
5
5
=
1
.
\newline
3
×
log
5
5
=
3
3 \times\log_5 5 = 3
3
×
lo
g
5
5
=
3
More problems from Evaluate logarithms using properties
Question
Convert the exponential equation in logarithmic form.
\newline
9
3
=
729
9^3 = 729
9
3
=
729
Get tutor help
Posted 9 months ago
Question
Convert the exponential equation in logarithmic form.
\newline
e
4
≈
54.598
e^4 \approx 54.598
e
4
≈
54.598
Get tutor help
Posted 9 months ago
Question
Write the logarithmic equation in exponential form.
\newline
log
10
100
=
2
\log_{10}100 = 2
lo
g
10
100
=
2
\newline
1
0
2
=
‾
10^2 = \underline{\hspace{2em}}
1
0
2
=
Get tutor help
Posted 1 year ago
Question
Evaluate. Write your answer as a whole number, proper fraction, or improper fraction in simplest form.
\newline
ln
(
e
)
10
=
\frac{\ln (e)}{10} =
10
l
n
(
e
)
=
______
Get tutor help
Posted 9 months ago
Question
Rewrite as a quotient of two common logarithms. Write your answer in simplest form.
\newline
log
3
33
=
\log_3 33 =
lo
g
3
33
=
______
Get tutor help
Posted 1 year ago
Question
Evaluate. Round your answer to the nearest thousandth.
\newline
log
5
50
=
\log_{5}50 =
lo
g
5
50
=
____
Get tutor help
Posted 1 year ago
Question
Which property of logarithms does this equation demonstrate?
\newline
log
3
3
+
log
3
6
=
log
3
18
\log_3 3 + \log_3 6 = \log_3 18
lo
g
3
3
+
lo
g
3
6
=
lo
g
3
18
\newline
Choices:
\newline
(A)
Product Property
\text{Product Property}
Product Property
\newline
(B)
Power Property
\text{Power Property}
Power Property
\newline
(C)
Quotient Property
\text{Quotient Property}
Quotient Property
Get tutor help
Posted 9 months ago
Question
Expand the logarithm. Assume all expressions exist and are well-defined.
\newline
Write your answer as a sum or difference of common logarithms or multiples of common logarithms. The inside of each logarithm must be a distinct constant or variable.
\newline
log
(
u
v
)
\log(uv)
lo
g
(
uv
)
\newline
_____
Get tutor help
Posted 1 year ago
Question
Expand the logarithm. Assume all expressions exist and are well-defined.
\newline
Write your answer as a sum or difference of common logarithms or multiples of common logarithms. The inside of each logarithm must be a distinct constant or variable.
\newline
log
v
7
\log v^7
lo
g
v
7
\newline
______
Get tutor help
Posted 1 year ago
Question
Expand the logarithm. Assume all expressions exist and are well-defined.
\newline
Write your answer as a sum or difference of base-
6
6
6
logarithms or multiples of base-
6
6
6
logarithms. The inside of each logarithm must be a distinct constant or variable.
\newline
log
6
w
6
\log_6 w^6
lo
g
6
w
6
\newline
______
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant