Q. Use Pascal's Triangle to expand (z2+5x2)4. Express your answer in simplest form.Answer:
Identify Row for Exponent 4: Identify the row of Pascal's Triangle that corresponds to the exponent 4. The row for the exponent 4 in Pascal's Triangle is the fifth row (starting with row 0 for the exponent 0), which has the coefficients 1,4,6,4,1.
Write Binomial Expansion: Write out the terms using the binomial expansion theorem with the coefficients from Pascal's Triangle.The binomial expansion of (a+b)4 is given by:1⋅a4+4⋅a3⋅b+6⋅a2⋅b2+4⋅a⋅b3+1⋅b4Substitute a with z2 and b with 5x2 to get:1⋅(z2)4+4⋅(z2)3⋅(5x2)+6⋅(z2)2⋅(5x2)2+4⋅(z2)⋅(5x2)3+1⋅(5x2)4
Simplify Each Term: Simplify each term.Now we simplify each term:1∗(z2)4=z84∗(z2)3∗(5x2)=4∗z6∗5x2=20z6x26∗(z2)2∗(5x2)2=6∗z4∗(5x2)2=6∗z4∗25x4=150z4x44∗(z2)∗(5x2)3=4∗z2∗(5x2)3=4∗z2∗125x6=500z2x61∗(5x2)4=(5x2)4=625x8
Combine Final Expanded Form: Combine all the terms to write the final expanded form.The final expanded form is:z8+20z6x2+150z4x4+500z2x6+625x8
More problems from Pascal's triangle and the Binomial Theorem