Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use Pascal's Triangle to expand 
(z^(2)+5x^(2))^(4). Express your answer in simplest form.
Answer:

Use Pascal's Triangle to expand (z2+5x2)4 \left(z^{2}+5 x^{2}\right)^{4} . Express your answer in simplest form.\newlineAnswer:

Full solution

Q. Use Pascal's Triangle to expand (z2+5x2)4 \left(z^{2}+5 x^{2}\right)^{4} . Express your answer in simplest form.\newlineAnswer:
  1. Identify Row for Exponent 44: Identify the row of Pascal's Triangle that corresponds to the exponent 44. The row for the exponent 44 in Pascal's Triangle is the fifth row (starting with row 00 for the exponent 00), which has the coefficients 1,4,6,4,11, 4, 6, 4, 1.
  2. Write Binomial Expansion: Write out the terms using the binomial expansion theorem with the coefficients from Pascal's Triangle.\newlineThe binomial expansion of (a+b)4(a+b)^4 is given by:\newline1a4+4a3b+6a2b2+4ab3+1b41\cdot a^4 + 4\cdot a^3\cdot b + 6\cdot a^2\cdot b^2 + 4\cdot a\cdot b^3 + 1\cdot b^4\newlineSubstitute aa with z2z^2 and bb with 5x25x^2 to get:\newline1(z2)4+4(z2)3(5x2)+6(z2)2(5x2)2+4(z2)(5x2)3+1(5x2)41\cdot (z^2)^4 + 4\cdot (z^2)^3\cdot (5x^2) + 6\cdot (z^2)^2\cdot (5x^2)^2 + 4\cdot (z^2)\cdot (5x^2)^3 + 1\cdot (5x^2)^4
  3. Simplify Each Term: Simplify each term.\newlineNow we simplify each term:\newline1(z2)4=z81*(z^2)^4 = z^8\newline4(z2)3(5x2)=4z65x2=20z6x24*(z^2)^3*(5x^2) = 4*z^6*5x^2 = 20z^6x^2\newline6(z2)2(5x2)2=6z4(5x2)2=6z425x4=150z4x46*(z^2)^2*(5x^2)^2 = 6*z^4*(5x^2)^2 = 6*z^4*25x^4 = 150z^4x^4\newline4(z2)(5x2)3=4z2(5x2)3=4z2125x6=500z2x64*(z^2)*(5x^2)^3 = 4*z^2*(5x^2)^3 = 4*z^2*125x^6 = 500z^2x^6\newline1(5x2)4=(5x2)4=625x81*(5x^2)^4 = (5x^2)^4 = 625x^8
  4. Combine Final Expanded Form: Combine all the terms to write the final expanded form.\newlineThe final expanded form is:\newlinez8+20z6x2+150z4x4+500z2x6+625x8z^8 + 20z^6x^2 + 150z^4x^4 + 500z^2x^6 + 625x^8

More problems from Pascal's triangle and the Binomial Theorem