Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use Pascal's Triangle to expand 
(x^(2)-z^(2))^(4). Express your answer in simplest form.
Answer:

Use Pascal's Triangle to expand (x2z2)4 \left(x^{2}-z^{2}\right)^{4} . Express your answer in simplest form.\newlineAnswer:

Full solution

Q. Use Pascal's Triangle to expand (x2z2)4 \left(x^{2}-z^{2}\right)^{4} . Express your answer in simplest form.\newlineAnswer:
  1. Identify Exponent Row: Identify the row of Pascal's Triangle that corresponds to the exponent 44. The 55th row (since we start counting from the 00th row for the exponent 00) of Pascal's Triangle is 1,4,6,4,11, 4, 6, 4, 1. These numbers will be the coefficients in our expanded expression.
  2. Write Binomial Theorem: Write out the terms of the expansion using the binomial theorem.\newlineThe binomial theorem tells us that (ab)n=Σ(nk)ankbk(a - b)^n = \Sigma \binom{n}{k} \cdot a^{n-k} \cdot b^k, where Σ\Sigma denotes the sum over kk from 00 to nn. For (x2z2)4(x^2 - z^2)^4, a=x2a = x^2, b=z2b = z^2, and n=4n = 4. We will use the coefficients from Pascal's Triangle to expand the expression.
  3. Apply Coefficients: Apply the coefficients to each term of the expansion.\newlineThe expanded form will be:\newline1(x2)4(z2)0+4(x2)3(z2)1+6(x2)2(z2)2+4(x2)1(z2)3+1(x2)0(z2)41\cdot(x^2)^4\cdot(z^2)^0 + 4\cdot(x^2)^3\cdot(z^2)^1 + 6\cdot(x^2)^2\cdot(z^2)^2 + 4\cdot(x^2)^1\cdot(z^2)^3 + 1\cdot(x^2)^0\cdot(z^2)^4
  4. Simplify Terms: Simplify each term of the expansion.\newlineNow we simplify the powers of x2x^2 and z2z^2 in each term:\newline1x8z0+4x6z2+6x4z4+4x2z6+1z81\cdot x^8\cdot z^0 + 4\cdot x^6\cdot z^2 + 6\cdot x^4\cdot z^4 + 4\cdot x^2\cdot z^6 + 1\cdot z^8\newlineSince z0=1z^0 = 1, we can simplify further:\newlinex8+4x6z2+6x4z4+4x2z6+z8x^8 + 4\cdot x^6\cdot z^2 + 6\cdot x^4\cdot z^4 + 4\cdot x^2\cdot z^6 + z^8
  5. Final Simplified Expression: Write the final expanded expression in simplest form.\newlineThe final expanded expression in simplest form is:\newlinex8+4x6z2+6x4z4+4x2z6+z8x^8 + 4x^6z^2 + 6x^4z^4 + 4x^2z^6 + z^8

More problems from Pascal's triangle and the Binomial Theorem