Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use Pascal's Triangle to expand 
(x^(2)+2z)^(4). Express your answer in simplest form.
Answer:

Use Pascal's Triangle to expand (x2+2z)4 \left(x^{2}+2 z\right)^{4} . Express your answer in simplest form.\newlineAnswer:

Full solution

Q. Use Pascal's Triangle to expand (x2+2z)4 \left(x^{2}+2 z\right)^{4} . Express your answer in simplest form.\newlineAnswer:
  1. Identify Row: Identify the row of Pascal's Triangle that corresponds to the exponent 44. The fourth row (starting with row 00) of Pascal's Triangle is 1,4,6,4,11, 4, 6, 4, 1.
  2. Write Expansion Terms: Write out the terms of the expansion using the coefficients from Pascal's Triangle.\newlineThe expansion will have terms that correspond to the coefficients 1,4,6,4,11, 4, 6, 4, 1. Each term will be of the form (x2)4k×(2z)k(x^{2})^{4-k} \times (2z)^{k}, where kk is the term number starting from 00.
  3. Calculate Each Term: Calculate each term of the expansion.\newlineThe terms are:\newline11st term: (x2)40×(2z)0=x8×1=x8(x^{2})^{4-0} \times (2z)^{0} = x^{8} \times 1 = x^{8}\newline22nd term: 4×(x2)41×(2z)1=4×x6×2z=8x6z4 \times (x^{2})^{4-1} \times (2z)^{1} = 4 \times x^{6} \times 2z = 8x^{6}z\newline33rd term: 6×(x2)42×(2z)2=6×x4×(2z)2=6×x4×4z2=24x4z26 \times (x^{2})^{4-2} \times (2z)^{2} = 6 \times x^{4} \times (2z)^{2} = 6 \times x^{4} \times 4z^{2} = 24x^{4}z^{2}\newline44th term: 4×(x2)43×(2z)3=4×x2×(2z)3=4×x2×8z3=32x2z34 \times (x^{2})^{4-3} \times (2z)^{3} = 4 \times x^{2} \times (2z)^{3} = 4 \times x^{2} \times 8z^{3} = 32x^{2}z^{3}\newline55th term: (x2)44×(2z)4=1×(2z)4=16z4(x^{2})^{4-4} \times (2z)^{4} = 1 \times (2z)^{4} = 16z^{4}
  4. Combine Terms: Combine all the terms to write the expanded form of the polynomial.\newlineThe expanded form is:\newlinex8+8x6z+24x4z2+32x2z3+16z4x^{8} + 8x^{6}z + 24x^{4}z^{2} + 32x^{2}z^{3} + 16z^{4}

More problems from Pascal's triangle and the Binomial Theorem